TSS Technologies

3D printing and Additive Manufacturing (AM) will benefit from finer-tuned, higher-quality parts in 2017, thanks to increased efforts to define standards and guidelines combined with advancements in the plastics and metals used for fabrication.

A 3D-printed fuel intake runner fabricated from Solvay's KetaSpire PEEK instead of the typical aluminum uses 10% glass fill. (Source: Solvay)

A 3D-printed fuel intake runner fabricated from Solvay’s KetaSpire PEEK instead of the typical aluminum uses 10% glass fill. Source: Solvay

On the standards front, Senvol is has started to maintain and offer the public a database of indexes for AM material characterization which is supplier-independent. This will eliminate the need for smaller manufacturers to duplicate existing research of materials conducted by other industries and make it easier for companies to enter AM production.

Metals printer and printing material sales are increasing at a robust rate as the production of end-production parts grows. Alcoa is among the manufacturers who have increased capacity to produce powdered metals for 3D printing at their tech center in Pittsburgh, PA. Carnegie Mellon’s NextManufacturing Center for Additive Manufacturing is now employing synchrotron-based x-ray microtomography to better inspect and improve 3d printed titanium components.

The most used materials for AM in 2015 were photopolymers and photoplastics, but this number is declining as ceramics, metals and other materials increase in popularity. Evonik and BASF are leveraging HP’s Open Platform program, to create new 3D printed parts and products, while Solvay is developing polymer-based materials to replace metal parts.

Read more at Design News ›